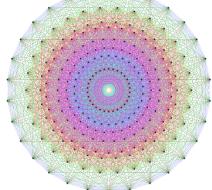

MaRDI as a pillar of a Global Digital Mathematics Library

"Beyond digitization, more value is expected by creating connected information resources which are of greater value than the sum of its contributing parts."


(2013 NAS report, Developing a 21st Century Global Library for Mathematics Research)

"The Mission of the GDML is to construct, as a global public good, an effective knowledge base encompassing the results of the world's mathematics through collaborations deploying both present and new technology, and to foster a supporting community."

(2015 GDML Mission statement)

List of dimensions for which there exist several non-isomorphic irreducible representations of E8

Sequence in context: A017375 A017495 A017627 * A185429 A154876 A27061

Some GDML (and MaRDI) history (I)

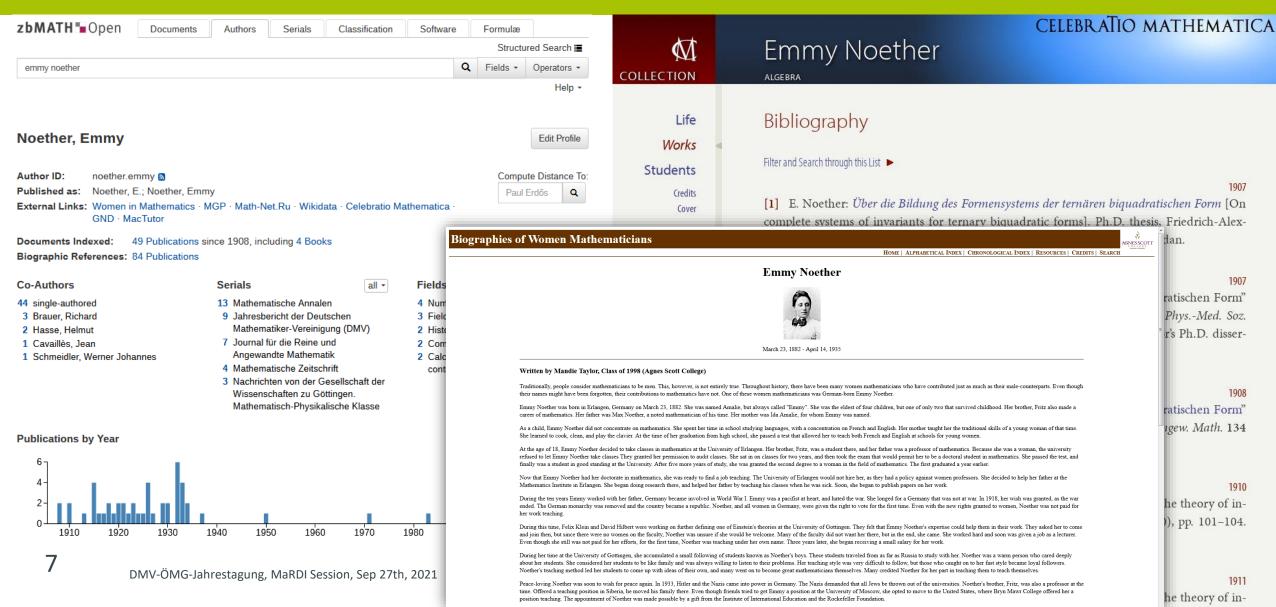
- 1998: WDML endorsed by the International Mathematical Union (IMU)
- 2001: IMU issues "Call to All Mathematicians to Make Publications Electronically Available"
- 2000's: large digitization projects
- 2006: IMU Report Digital Mathematics Library: A Vision for the Future
- 2010: European Digital Mathematics Library (EuDML)
- 2011: Alfred P. Sloan Foundation funds WDML workshop at NAS November
- 2012-2013: NAS Digital Math Library Committee Report
- 2014: Seoul ICM Meeting Creation of GDML WG
- 2015: Recognized as WG of IMU CEIC

Some GDML (and MaRDI) history (II)

- 2017: Foundation of IMKT based in Waterloo ON, Canada
- 2016-2021: GDML/MIDAS sessions (JMMs, ECMs, ICM)
- 2018, Nov 5th MaRDI (pre-)Kick-off
- 2019, Jan 7th MaRDI Initiative Meeting, leading to formation of consortium
- May 2019 Participation 1st NFDI Conference
- Oct 2019 MaRDI proposal submitted
- Sep 2020 revised MaRDI proposal submitted
- Jul 2021 MaRDI approved
- Oct 2021 Start of MaRDI

Some history of reviewing services

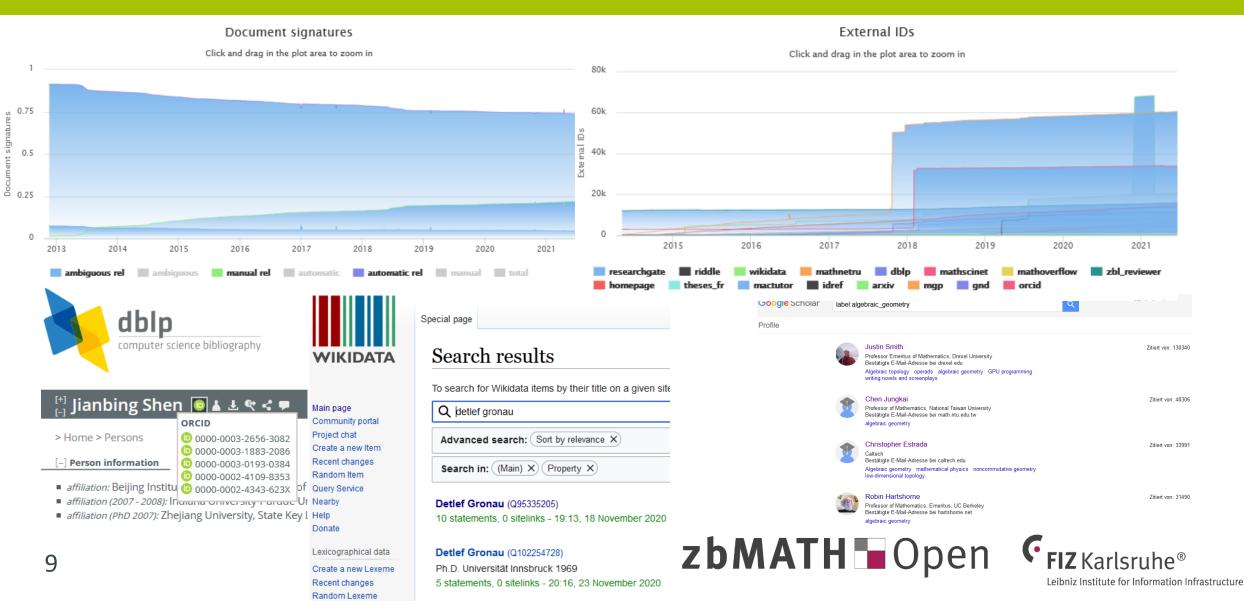
- 1871: First volume of Jahrbuch über die Fortschritte der Mathematik published (comprising the mathematics published in 1868)
- 1931: First volume of Zentralblatt für Mathematik und ihre Grenzgebiete
- 1940: First volume of Mathematical Reviews
- 1952: First volume of Referativny Zhurnal
- 1980: Electronic versions of Mathematical Reviews and Zentralblatt
- 1996: MathSciNet and MATH (later zMATH, zbMATH) online databases
- 2004: Jahrbuch digitization
- 2011-now: Profile and facet features at review databases, swMATH,...
- 2021: zbMATH becomes zbMATH Open


Steps toward zbMATH Open

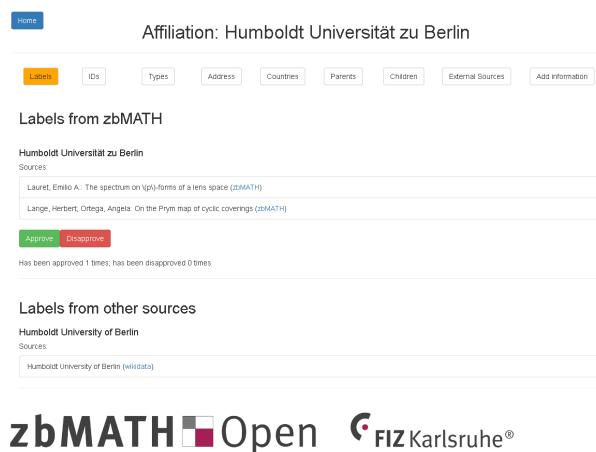
- 2017: Evaluation of FIZ Karlsruhe by Leibniz Association
- 2018: Strong recommendation for OA transition
- 2018: Development of OA concept, approval by supervisory councils of FIZ
- 2018: Application for special federal-state funds
- 2019: Two-step approval by governmental bodies
- 2020: Initial release of API for Jahrbuch data
- 2020: New Editorial contract of European Mathematical Society, FIZ Karlsruhe, and Heidelberg Academy of Sciences
- 2020-...: Negotiations with publishers, reshaped development, hiring...
- 2021: zbMATH Open (as of Jan 1st), zbMATH Open OAI-PMH API

Progress of connected services (I) – author disambiguation and profiles (I)

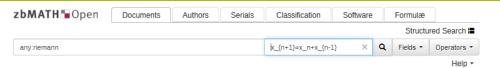
Progress of connected services (II) – author disambiguation and profiles (II)


Author disambiguation is a great example for both the efficiency and challenges of open interlinked quality services:

- There is a great need for quality open data
- There is an incentive for crowd participation (though there is not always an incentive for quality)
- There are many different open services providing different information facets
- Automated, crowd, and intellectual approaches are combined
- Great opportunities for automated correction by linked information but also significant danger of error propagation


Progress of connected services (III) – author disambiguation and profiles (III)

Progress of connected services (IV) – institution disambiguation and profiles


Analogous (but different) work is currently down for affiliation assignments (initial release planned for 2022)

Leibniz Institute for Information Infrastructure

Progress of connected services (V) – Digital Mathematics Libraries

zbMATH Open has integrated already a large amount of diverse open resources, facilitating additional services like

Moree, Pieter: Stevenhagen, Peter

Prime divisors of the Lagarias sequence. (English) Zbi 1064.11013 J. Théor. Nombres Bordx. 13, No. 1, 241-251 (2001).

J. C. Lagarias in [Pac. J. Math. 118, 449-461 (1985; Zbl 0569.10003); Pac. J. Math. 162, No. 2, 393-397 (1994; Zbl 0790.11014)], posed a challenge problem to determine, under the GRH, the density of the set of prime numbers that occur as divisor of some term of the sequence $\{x_n\}_{n\geq 1}$ defined by the linear recurrence $x_{n+1}=x_n+x_{n-1}$ and the initial values $x_0=3$ and $x_1=1$

In the paper under review, the authors solve this problem by showing that the density in question is

$$\frac{1573727}{1569610} \cdot \prod_{p \text{ prime}} \left(1 - \frac{p}{p^3 - 1}\right).$$

In fact, this paper shows how to compute, under GRH, the density of the set of prime factors of any nondegenerate binary recurrent sequence $\{x_n\}_{n\geq 1}$. The method uses the Chebotarev Density Theorem and the principle of inclusion and exclusion to reduce the problem to the computation of a series involving degrees of algebraic number fields of the type $\mathbb{Q}[\zeta_{ij}, r^{1/ij}, q^{1/i})$, where r is the ratio of the roots of the recurrent sequence, q is its initial quotient, and ζ_{ij} is a primitive root of unity of order ij. The analysis is quite complicated when r is of degree 2 (like in Lagarias's example), as there one has to separately consider split and inert primes, and several subtleties need to be taken care of at the prime 2. The authors result is that this density is

$$(c_{q,r}^++c_{q,r}^-)\prod_{p ext{ prime}}\Bigl(1-rac{p}{p^3-1}\Bigr),$$

where the "correction factors" $c_{a,r}^+$ and $c_{a,r}^-$ are rational numbers arising from the contributions of split and inert primes in $\mathbb{Q}[r]$, respectively. For the numerical example asked by Lagarias, the authors obtain $c_{ar}^+=712671/1569610$ and $c_{ar}^-=61504/112115$.

Reviewer: Florian Luca (Morelia)

Fibonacci and Lucas numbers and polynomials and generalizations

Cited in 3 Documents

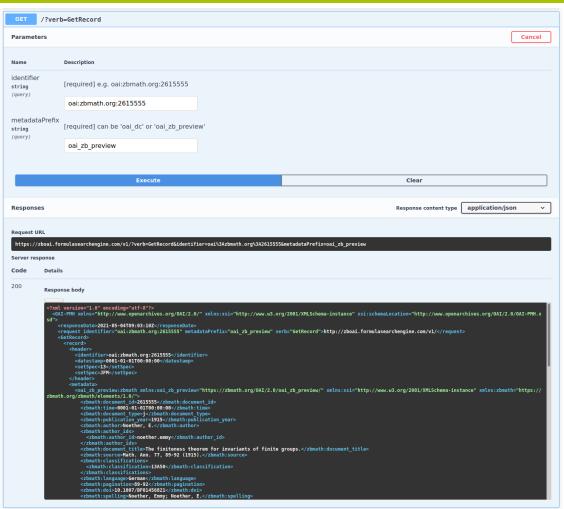
Chebotarev density theorem; generalized Riemann hypothesis

PDF BibTeX XML Cite Full Text: DOI EMIS Numdam EuDML arXiv WorldCat°

- Ballot, C., Density of prime divisors of linear recurrent sequences. Mem. of the AMS551, 1995. Zbl 0827.11006
- [2] Hasse, H., Über die Dichte der Primzahlen p. für die eine vorgegebene rationale Zahl a ≠ 0 von durch eine vorgegebene Primzahl I ≠

- Scope definition
- Quality control
- (Title) translation
- Reference linking
- Author disambiguation
- Classification (semantics)
- Reviews
- Formulae search

Todo: Further extension, e.g., if applicable, to preprints!


Progress of connected services (VI) – OAI-PMH

Available (as of today):

OAI-PMH interface of zbMATH Open

https://oai.zbmath.org/

which provides a large subset of zbMATH data under CC-BY-SA 4.0 license, including all Jahrbuch data; editorial data from zbMATH (reviews, classification, author information); doi+further identifiers; publisher information if compatible with the license, including a large set of reference data

Progress of connected services (VII) – community interfaces

Saito, Masa-Hiko

On the infinitesimal Torelli problem of elliptic surfaces. (English) Zbl 0532.14019

J. Math. Kyoto Univ. 23, 441-460 (1983).

The author studies the injectivity of the map $\delta: H^1(X,\Theta) \to Hom_{\mathbb{C}}(H^{2,0}(X),H^{1,1}(X))$ given by the cup-product $H^0(X,\Omega^2) \otimes H^1(X,\Theta) \to H^1(X,\Omega^1)$ deduced from the contraction $\Theta \otimes \Omega^2 \to \Omega^1$ for an elliptic surface $\phi: X \to C$ with base curve C. He proves that:

 δ is injective if $h^{2,0}(X) > O$ and one of the following three conditions holds: (i) the functional invariant J(X) is not constant; (ii) J(X) is constant, distinct from O and 1, and either C is $\mathbb{P}_1(\mathbb{C})$ or (iii) $\chi(X, \mathcal{O}_X)) \geq 3$.

If $\phi: X \to C$ is an elliptic bundle, then: (i) δ is injective if $g(C) = h^{1,0}(C) = 1$, (ii) if $b_1(X)$ is even and $g(C) \ge 2$, δ is not injective iff g(C) > 2 and C is hyperelliptic; (iii) if $b_1(X)$ is odd and $g(C) \ge 2$, δ is never injective. - For Kodaira surfaces, the global Torelli does not hold, although the map δ is injective.

Editorial remark: A. Ikeda constructed in [Adv. Math. 349, 125–161 (2019; Zbl 1414.14004)] an elliptic surface Y and showed that the period map for the Hodge structure on $H^2(Y, \mathbb{Z})$ has one dimensional fibers and the general fiber has two irreducible components, which contradicts the main theorem of this work.

Reviewer: F.Campana

Cited in 1 Review

Cited in 7 Documents

MSC:

.4J15 Moduli, classification: analytic theory; relations with modular forms

14C30 Transcendental methods, Hodge theory (algebro-geometric aspects)

32J15 Compact complex surfaces

14J25 Special surfaces

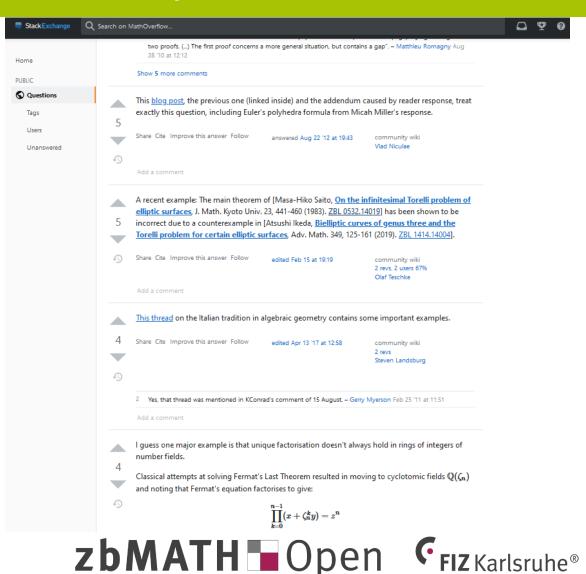
32J25 Transcendental methods of algebraic geometry (complex-analytic aspects)

32G05 Deformations of complex structures

MathOverflow Ouestions:

Peer review 2.0

Widely accepted mathematical results that were later shown to be wrong?


Keywords:

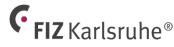
compact complex surface; second cohomology; Hodge structure; infinitesimal Torelli problem; elliptic surfaces; elliptic bundle; Kodaira surfaces

Full Text: DOI

Progress of connected services (VIII) – DLMF

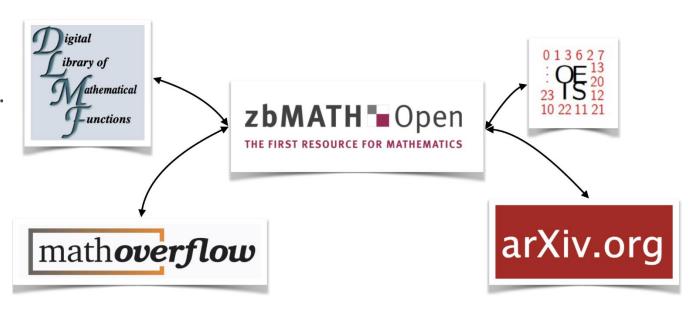
Currently, the most cited document References only slowly migrate in zbMATH is actually a research data from literature to (much more reference, namely, the *Handbook of* useful) digital DLMF references mathematical functions with formulas, graphs and mathematical tables by Abramowitz and Stegun.

 Abramowitz, Milton, and Irene A. Stegun (edited by): Handbook of mathematical functions with formulas, graphs, and mathematical tables. (National Bureau of Standards. Applied Mathematics Series. 55.) Washington: U.S. Department of Commerce 1964. XIV, 1046 p. \$ 6.50. Table Errata. Math. Comput. 21, 747 (1967).

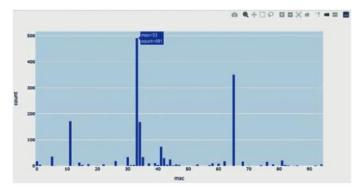

Dieses umfassende Werk über das Gebiet der speziellen Funktionen vereint eine Vielzahl von Tafeln und dazugehörigen Formeln. 29 Kapitel wurden von 28 Autoren bearbeitet. Die Tafeln sind teilweise von sehr hoher Genauigkeit, z.B. sind die trigonometrischen Funktionen mit 23 Stellen wiedergegeben. Im einzelnen sind in dem Buch Tafeln enthalten über mathematische und physikalische Konstanten, elementare transzendente Funktionen, Integralsinus und verwandte Funktionen, Gammafunktionen und Verwandte, Fehlerintegral und Fresnelsche Integrale. Legendresche Funktionen, Besselsche Funktionen und Integrale, Struvesche Funktionen und Verwandte, hypergeometrische und konfluente hypergeometrische Funktionen, elliptische Funktionen und Integrale, parabolische Zylinderfunktionen und eine Anzahl weiterer spezieller Funktionen. Ein Kapitel unter der Überschrift "Elementare analytische Methoden" enthält eine nützliche Formelsammlung und Tafeln von Potenzen und Wurzeln. Ein weiteres Kapitel ist der numerischen Integration. Differentiation und Interpolation gewidmet und enthält ebenfalls eine Anzahl von Tafeln, etwa die Lagrangeschen Interpolationskoeffizienten bis achter Ordnung oder Abzissen und Gewichte der Gaußschen Quadraturformeln auf 20 Stellen. In weiteren Kapiteln werden Mathieusche Funktionen, Orthogonalpolynome, Bernoullische und Eulersche Polynome sowie die Riemannsche Zetafunktion, statistische Verteilungsfunktionen und Laplace-Transformationen behandelt. Ein umfangreiches Kapitel ist der Kombinatorik und zahlentheoretischen Funktionen gewidmet. Mit diesem Buch dürfte das Standardtafelwerk vorliegen, das für viele Zwecke spezielle und umfangreiche Tafeln und Formelsammlungen ersetzen kann oder sogar K.-H. Bachmann.

Citations of Abramowitz-Stegun and DLMF in WoS and zbMATH 3000 2000 1500 2015 2016 2017 ■ ◆ ■ DLMF (WoS) •• ◆ •• A&S (zbMATH) ■ DLMF (zbMATH)

Improvement made possible by zbMATH Links API

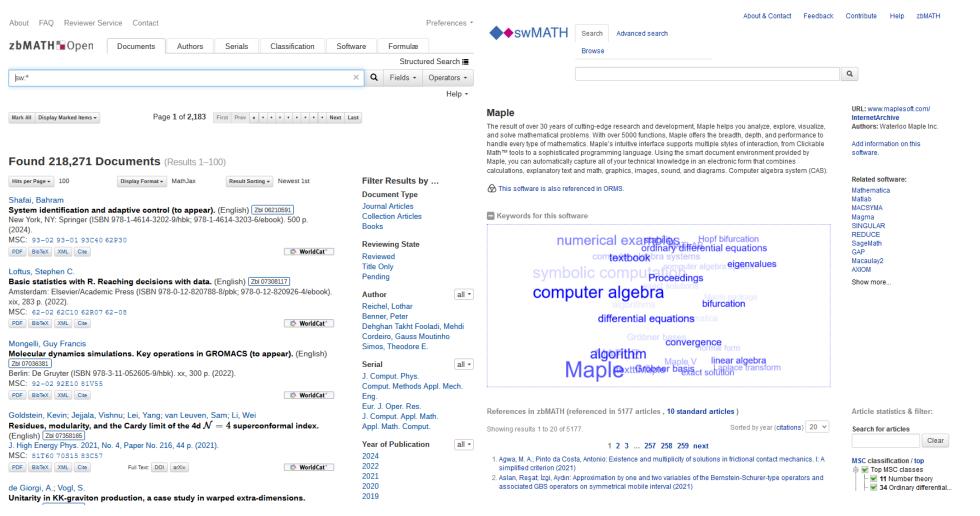

Zentralblatt für Mathematik. 171.

Progress of connected services (IX) – zbMATH Links API


This interlinking is made possible through the zbMATH Links API, currently extended to integrate also services like NIST DLMF, OEIS,...

(see more on DLMF interlinking in next EMS Magazine).

Much more to expect from MaRDI!



Progress of connected services (X) – mathematical software

Thank you!

Zertifikat seit 2016

audit berufundfamilie

Leibniz Institute for Information Infrastructure

Except where otherwise noted, content is licensed under a Creative Commons Attribution 4.0 International License.

